Rationale

To prepare students for the prose constructed response on the PARCC Research Simulation Task, they should practice authentic writing experiences modeled on the PARCC format.

Goal

To complete a practice session for the RST prose constructed response

Task Foci

CCSS W.9-10.1: Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence.

CCSS W.9-10.2: Write informative/explanatory texts to examine and convey complex ideas, concepts, and information clearly and accurately through the effective selection, organization, and analysis of content.

CCSS W.9-10.4: Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

CCSS W.9-10.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (Editing for conventions should demonstrate command of Language standards 1-3 up to and including grades 9-10 here.)

CCSS W.9-10.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

CCSS W.9-10.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation.

CCSS W.9-10.9: Draw evidence from literary or informational texts to support analysis, reflection, and research.

CCSS W.9-10.10: Write routinely over extended time frames (time for research, reflection, and revision) and shorter time frames (a single sitting or a day or two) for a range of tasks, purposes, and audiences.

Objectives

Students will complete a practice RST prose constructed response
Materials

- Computer with Microsoft Word (per student)
 - Note: Since PARCC is a computer-based test, it would be best if students can practice typing their essays.
- Text Set handout
- Prompt handout

Procedures

Tell your students that today they will complete a practice prose constructed response for the Research Simulation Task.

Make sure every student has opened a new Word file and is ready to write. NOTE: If students are handwriting their essays, have them skip lines because they will revise their essays in Lesson 8.

Pass out the sample texts and prompt handouts.

"You have X minutes to complete this essay. Ready? Begin." (Almost entire class period should be given to write. Estimated completion time for the PARCC RST is 85 minutes. This includes reading, answering selected response questions and writing essay.)

Remind class when five minutes remain.

When time ends, have students save their essays as "Last Name_First Initial_Draft 1." Print their essays and collect. They will need them for Lesson 8.

In closing, ask students for feedback on their test-taking experience.

Assessment

Students’ essays should demonstrate their knowledge and application of the following elements of composition:

- A clear thesis statement that makes an arguable claim in response to the prompt.
- Use of evidence that demonstrates the student understood the readings.
- Use of evidence that clearly supports the student's thesis.
- A clear introduction that addresses the prompt and includes the thesis statement.
- Organized body paragraphs with clear reasons, supporting details, and a connection to the thesis.
- A clear conclusion that briefly restates the reasons and thesis statement.

Extension Activities

- Standards Solution has many PARCC-aligned practice tests available online.

Gain access to over 500 PARCC Lesson Plans for grades 3 through 11, each grade level including:

- 20 Reading lessons
- 20 Writing lessons
- 20 Mathematics lessons

Purchase lessons by grade level or alongside one of our professional development workshops

Call (908) 223-7202

Or email us at info@standardssolution.com
In the 1996 appropriations bill for the U.S. Department of Transportation, the Senate Appropriations Committee noted that "NHTSA data indicate that in recent years there have been about 56,000 crashes annually in which driver drowsiness/fatigue was cited by police. Annual averages of roughly 40,000 nonfatal injuries and 1,550 fatalities result from these crashes. These statistics also do not deal with crashes caused by driver inattention, which is believed to be a larger problem."

In response, Congress allocated funds for a public education campaign on drowsy driving among noncommercial drivers, to be sponsored by the National Highway Traffic Safety Administration (NHTSA) and the National Center on Sleep Disorders Research (NCSDR) of the National Heart, Lung, and Blood Institute, the National Institutes of Health. This focus complements Federal Highway Administration efforts to address the problem among commercial vehicle drivers (Federal Register, 1996).

To provide evidence-based direction to this campaign, the Expert Panel on Driver Fatigue and Sleepiness reviewed the research conducted to date on drowsy-driving crashes. The resulting report outlines the following:

- The biology of human sleep and sleepiness, which physiologically underlies crash risk.
- Common characteristics of crashes related to drowsy driving and sleepiness.
- Risks for crashes attributed to drowsy driving.
- Population groups at highest risk.
- Effective countermeasures used to prevent drowsy driving and related crashes.

In addition to summarizing what is known—and what remains unknown—from sleep and highway safety research, the report also presents the panel's recommendations for the highest priority target audiences and educational message points for the NCSDR/NHTSA campaign.

METHODS AND KNOWLEDGE BASE OF THIS REPORT

The panel conducted a wide-ranging search for information on sleep, circadian rhythms, sleepiness, drowsiness, sleep physiology, and sleep disorders, as well as on the association of these topics with driving risk and crash prevention. The panel conducted literature searches of online databases in traffic safety, medicine, and physiology using the keywords listed above and following suggestions for linkage to related topics (e.g., technology, alerting devices, industrial accidents, and shift work). In addition, the panel conducted formal and informal reviews and monographs by Federal, State, and nongovernmental agencies. Although there was no formal ranking of the scientific rigor of all this material, original papers, reviews, monographs, and reports selected for citation reflect the higher levels of evidence available on the topic and literature upon which the major concepts or opinions of the panel report are based. The references provided do not, however, reflect all resources available or reviewed by the panel; when possible, more recent material or reviews are preferred.

The principal types of primary data the panel used fall into the following categories:

- Studies of crash data that identify crashes in which the driver was reported by police to have fallen asleep and the characteristics of the sleepy driver.
- Self-reports from drivers involved in crashes (with data collected either at the crash scene or retrospectively) that gather information on driver behavior preceding the crash or relevant work, sleep, and other lifestyle habits.
Population surveys that relate driver factors to fall-asleep or drowsy-driving crashes or to risky behavior associated with crashes.

Laboratory studies using a driver simulator or other fundamental tests that relate the effects on performance of sleepiness, sleep loss, and the combined effects of sleep loss and alcohol consumption.

Laboratory studies using a driver simulator or performance tests that examine the performance of persons with sleep disorders compared with a control group.

Retrospective studies that compare crash histories of drivers with sleep disorders with other drivers.

Laboratory and epidemiological studies of drowsy-driving countermeasures.

The literature reviewed had variations in design, method, rigor, populations included, methodological detail, outcome measures, sample sizes, and outcome definitions, which is relatively small, and are recorded as an outcome measure as an

RESEARCH NEEDS

The panel identified three major categories in which more evidence is needed:

Quantification of the problem. To allow accurate estimates of the true prevalence of drowsy-driving crashes, it will be important to develop a standard manner by which law enforcement officers can assess and report crashes resulting from drowsy driving. Currently, States use different definitions and have varying reporting requirements, which hinder quantification. However, this is not just a reporting problem; a method for objectively assessing sleepiness at the crash site also would enable better quantification.

Risks. More information is needed on chronic and acute risks for drowsy-driving crashes. For example, capturing information on drivers' pre-crash behaviors (e.g., duration of prior wakefulness, recent sleep-wake patterns, the quality and quantity of sleep, work hours, and work patterns [day shift, night shift, rotating shift]) could enhance understanding of the problems. It is important to learn more about the impact of drowsiness on driving at all points on the continuum, from low-level drowsiness to falling asleep at the wheel.

Countermeasures. Additional information is needed on measures that increase or restore driver alertness or reduce crash risk or incidence. Investigation of the recognition, treatment, and management of sleepiness and sleep disorders in the workplace for reaching high-risk audiences will help increase drowsy-driving knowledge, attitudes, and behavior.

II. BIOLOGY OF HUMAN SLEEP AND SLEEPINESS

Sleeplessness, also referred to as drowsiness, is defined in this report as the need to fall asleep, a process that is the result of both the circadian rhythm and the need to sleep (see below). Sleep can be irresistible; recognition is emerging that neurobiologically based sleepiness contributes to human error in a variety of settings, and driving is no exception (Kerstedt, 1995a, 1995b; Dinges, 1995; Horne, 1988; Sharpley, 1996; Martikainen, 1992). In the more recent surveys and reporting of noncommercial crashes, investigators have begun to collect and analyze data for instances in which the driver may have fallen asleep.

The terms "fatigue" and "inattention" are sometimes used interchangeably with sleepiness; however, these terms have individual meanings (Brown, 1994). Strictly speaking, fatigue is the consequence of physical labor or a prolonged experience and is defined as a disinclination to continue the task at hand. Inattention can result from the disinclination to drive and the need to drive. This result can be a progressive withdrawal of attention to the tasks required for safe driving. Inattention can result from preoccupation, distractions inside the vehicle, or behavioral factors (e.g., distraction, impairment of vision) (Treat et al., 1979).
The driving literature before 1985 made little mention of sleepiness and instead focused on the prevention of inattention and fatigue; traffic crash forms did not have a category for reporting sleepiness as a crash cause. Certainly, sleepiness can contribute to fatigue and inattention, and given the lack of objective tests or uniform reporting requirements to distinguish these different crash causes, misclassification and inconsistencies in the primary data and the literature can be expected. Some, but not all, recent studies and reviews make an explicit assumption that given the uncertainty in crash reports, all crashes in the fatigue and inattention categories should be attributed to sleepiness. The panel suspects that sleepiness-related crashes are still often reported in the categories of fatigue and inattention, and it reached consensus that sleepiness is an under-recognized feature of noncommercial automobile crashes.

The panel concluded that the data on fatigue and inattention provide less support for defining risk factors and high-risk groups than the data on sleepiness or drowsiness. In addition, sleepiness is identifiable, predictable, and preventable.

An Excerpt from "Drowsy Driving" Report: Part II
http://www.nhtsa.gov

All drivers who experience the chronic or acute situations described in section IV are at risk for drowsy driving and drowsy-driving crashes. Although no one is immune from risk, research to date clearly identifies three broad population groups at high risk for drowsy-driving crashes. Their higher risk is based on (1) evidence from crash data of a greater absolute or relative number of fall-asleep crashes and/or (2) increased intermediate risk, based on subjective reports of their having higher levels of sleepiness and more of the chronic or acute factors that underlie risk for everyone. The three groups at high risk are young people, shift workers, and people with untreated sleep conditions.

YOUNG PEOPLE, ESPECIALLY YOUNG MEN

Virtually all studies that analyzed data by gender and age group found that young people, and males in particular, were the most likely to be involved in drowsy-driving crashes (Pack et al., 1995; Horne, Reyner, 1995b; Maycock, 1996; Knipling, Wang, 1994). Definitions of "young" differed among authors; the ages included in this category fell between 16 and 29.

Young people. Knipling and Wang (1995) found that drivers younger than 30 accounted for almost two-thirds of drowsy-driving crashes, despite representing only about one-fourth of licensed drivers. These drivers were four times more likely to have such a crash than were drivers ages 30 years or older. In Pack and colleagues' study (1995), 20 was the peak age of occurrence of drowsy-driving crashes, whereas in New York State the greatest number of drowsy drivers (on self-report) were within the 25- to 34 age group (McCartt et al., 1996), and both the 18- to 24 and 25- to 39 age groups were overrepresented in fall-asleep crashes. Horne and Reyner (1995a) suggest that chronic and acute risk factors and frequently being on the roads during nightime may explain the greater incidence of drowsiness-related crashes in youth. Carskadon (1990) offers a variety of age-specific reasons for the involvement of younger people, particularly adolescents, in excessive sleepiness because of the following: maturational changes that increase the need for sleep; changes in sleep patterns that reduce nighttime sleep or lead to circadian disruptions; and, cultural and lifestyle factors leading to insufficient sleep, especially a combination of schoolwork demands and part-time jobs, extracurricular activities, and late-night socializing. In one study (Carskadon, 1990), boys with the greatest extracurricular time commitments were most likely to report falling asleep at the wheel. The subgroup at greatest risk comprised the brightest, most energetic, and hard-working teens.
The panel felt that vulnerability may be further increased when young people use alcohol or other drugs because sleepy youth are likely to be unaware of the interaction of sleepiness and alcohol and may not recognize related impairments they experience.

Males. In North Carolina, males were found to be at the wheel in about three of four fall-asleep crashes (Pack et al., 1995). NHTSA data show that males are 5 times more likely than females to be involved in drowsy-driving crashes (Wang, Knipling, Goodman, 1996). The reasons young males have more crashes than do young females are not clear because both young men and young women are likely to be chronically sleep-deprived.

SHIFT WORKERS
Most shift workers have at least occasional sleep disturbances, and approximately one-third complain of fatigue (Kerstedt, 1995a, 1995b, 1995c). Older shift workers appear to have more sleep-related difficulties than do younger workers, but no gender differences have been found (Harma, 1993). Night shift workers typically get 1.5 fewer hours of sleep per 24 hours as compared with day workers. The midnight to 8 a.m. shift carries the greatest risk of sleep disruption because it requires workers to contradict circadian patterns in order to sleep during the day (Kessler, 1992).

Investigations have demonstrated that circadian phase disruptions caused by rotating shift work are associated with lapses of attention, increased reaction time, and decreased performance (Dinges et al., 1987; Hamilton et al., 1972; Williams et al., 1959). A study of hospital nurses reached similar conclusions based on "real world" experiences. Rotating shifts (working four or more day or evening shifts and four night shifts or more within a month) caused the most severe sleep disruptions of any work schedule. Nurses on rotating schedules reported more "accidents" (including crashes than did nurses reported having worked other schedules (Gold et al., 1992). About 95 percent of night nurses working 12-hour shifts reported having an automobile accident or near-miss accident while driving home from night work (Novak, Auvil-Novak, 1996).

Hospital interns and residents are a high-risk group because much of their work involves rotating shifts, much of which was found to be hazardous. About 25 percent reported that they had been involved in an on-call night. Others reported driving home after a night shift and falling asleep at a traffic light.

Although this evidence does not demonstrate a conclusive association between shift work and crashes, the panel believes that shift workers' increased risk for sleepiness is likely to translate into an increased risk for automobile crashes. Competing demands from family, second jobs, and recreation often further restrict the hours available for sleep and further disrupt the sleep schedule.

The panel also designated shift workers as a high-risk group because the number of people who perform shift work—and are thus exposed to crash risk—is increasing. This sector is growing at a rate of 3 percent per year, as businesses such as overnight deliveries, round-the-clock computer operations, continuous-operation factories prosper and expand. According to World Health Organization estimates, 20 percent of workers (15 percent) work other than a daytime shift, and almost one in six women (15 percent) work other than a daytime shift, and almost one in six women (15 percent) work other than a daytime shift, and almost one in six women (15 percent) work other than a daytime shift, and almost one in six women (15 percent) work other than a daytime shift, and almost one in six women (15 percent) work other than a daytime shift, and almost one in six women (15 percent) work other than a daytime shift.

PEOPLE WITH UNTREATED SLEEP APNEA SYNDROME (SAS) AND NARCOLEPSY

Although the absolute number of crashes is low, crash risk is increased among people with untreated sleep apnea syndrome (SAS) and narcolepsy. The proportion of crashes is higher among people with untreated narcolepsy than it is for people with untreated SAS. However, because SAS is more common than narcolepsy, the absolute number of crashes is higher for those with untreated SAS (Aldrich, 1989). In addition, people with untreated SAS or narcolepsy perform less well on driving simulation and vigilance or attention tests than do people without these disorders (Findley, 1995; American Thoracic Society, 1994; Haralson et al., 1990). Finding evidence of sleep-disordered breathing, ranging from
habitual snoring to repeated breathing interruptions, also increases the likelihood of crashes in a dose-response manner (Stradling et al., 1991; Philip et al., 1996; Hanning, Welch, 1996; Ohayon, Priest, Caulet, et al., 1997).

Although these conditions place people at higher risk for drowsy-driving crashes, they are not invariably linked with impaired driving. For example, many people with these disorders report no auto crashes (Findley et al., 1988; Aldrich, 1989). Findley and colleagues (1989) found that patients with severe untreated sleep apnea had more frequent crashes than did those with mild untreated sleep apnea. Recognizing impending uncontrollable sleepiness and taking precautions is key (Aldrich, 1989).

Sleep apnea syndrome is somewhat more common among males than among females, and typical patients tend to be overweight. Men tend to be overweight and more at risk. Women are as likely to be overweight as men and are as likely to be found in any gender role (Stradling et al., 1991; American Thoracic Society, 1994). Narcolepsy usually begins in adolescence. The time from onset of symptoms to diagnosis of narcolepsy averages 10 years (American Thoracic Society, 1994; National Commission on Sleep Disorders Research, 1993). Currently, many people with these conditions are undiagnosed and untreated, unaware of the potentially serious consequences of drowsiness and even unaware of the difficulty they may experience in maintaining alertness (Arbus et al., 1991; Hansotia, 1997). Falling asleep at the wheel may be a major factor that motivates undiagnosed patients to seek medical care. The matter is rarely raised in driver or law enforcement education, and even health care professionals may not recognize a history of sleepiness as a risk factor for fall-asleep crashes. Medical systems have been successful in identifying only a fraction of the population with symptomatic sleep apnea to date (Strohl, Redline, 1996).

An Excerpt from “Drowsy Driving” Report: Part III

To assist the NCSDR/NHTSA in developing its educational initiatives, the panel recommended three priorities for the campaign:

1. Educate young males (ages 16 to 24) about drowsy driving and how to reduce lifestyle-related risks.
2. Promote shoulder rumble strips as an effective countermeasure for drowsy driving; in this context, raise public awareness about drowsy-driving risks and how to reduce them.
3. Educate shift workers about the risks of drowsy driving and how to reduce them.

EDUCATE YOUNG MALES ABOUT DROWSY DRIVING AND HOW TO REDUCE LIFESTYLE-RELATED RISKS

Young males, ages 16 to 24, received highest priority because of their clear over-representation in crash statistics and because many of their lifestyle risks are amenable to change. Although young males ages 16 to 24 have increased crash risks, the panel targeted only the younger group to enable specific tailoring of educational messages to this population’s needs and preferences. In fact, campaign designers may want to segment further, creating different messages for the 16-to-18 and 19-to-24 age groups. The younger group is high school age and more likely to live at home with parents; members of the older group are more likely to be working or in college and less subject to parental authority. The panel also believes it may be worthwhile to educate preteen boys, their parents, and their schools to influence attitudes before problems begin. The messages might be the following: sleepiness is not inevitable for teens, and it is not okay to drive when you are sleepy.

The panel recognized that the risk-taking behaviors of younger men will be a challenge in developing successful educational approaches. Focus group research is needed to develop a better understanding of young men's perceptions.
of fall-asleep crash risk and the kinds of interventions that would be effective with this group. Based on the literature, however, the panel suggests that campaign designers consider the following message points, many of which are appropriate for all public audiences:

Sleepiness is a serious risk for young male drivers.

Although little is known about the knowledge and attitudes of this group regarding sleepiness and driving, it is likely to be low awareness of the risk is likely to be low and needs to be raised. Surveys of the general population suggest that knowledge of the risk is likely to be low and awareness will need to be raised. It will be important for messages to affect attitudes, so that young men and their parents believe the risk is serious and young men are vulnerable. Misconceptions that sleepiness is inevitable at this age and that chronic sleepiness is a safe lifestyle choice need to be overcome. Understanding the concept of sleep debt could be useful, as could recognizing the uncontrollable nature of falling asleep at high levels of drowsiness.

Driving between midnight and 6 a.m. is a high-risk situation.

Scheduling a trip at another time is a simple way to reduce risk, especially if the drive is long.

An active lifestyle that restricts sleep is a special risk.

Many young men will recognize themselves in the picture of a chronically sleepy student who also works part-time, participates in extracurricular activities, and has an active social life. The “all nighter” represents an acute risk because extreme tiredness follows one sleepless night. The recommended action is not to start a long drive after one or more sleepless nights (e.g., do not drive home from college the day your exams are over).

Drinking alcohol increases risk and decreases performance and increases risk.

Messages could be framed to highlight the risk when they are already sleepy or during an acute event. Drowsy-driving messages could be paired with messages about the dangers of drinking and driving. You can take effective steps if you become sleepy while driving. These steps include stopping driving altogether, if possible; consuming the caffeine equivalent of two cups of coffee; taking a 20-minute nap, and after the nap, driving to the closest safe resting spot, such as a motel, friend’s house, or home; and sleeping.

Successful strategies from drinking and driving campaigns might also be adapted to drowsy driving if focus groups confirm their appeal. For example, adolescents often call a friend or a parent for a ride or let a friend drive home instead of driving themselves; messages to parents might suggest that they tell teenagers to call for a ride if they feel too sleepy to drive. In another alcohol strategy variation, parents might allow sleepy friends of teens to sleep over rather than drive home.

The campaign also could counter common misconceptions of useful “stay awake” behaviors, such as exercising, turning on the radio, or opening the windows, which have not been shown to prevent sleep attacks.

Messages to policymakers could promote legislation that does not permit younger drivers to drive during late night hours (e.g., after midnight) and the special risks of driving during this time for younger ones.

PROMOTE SHOULDER RUMBLE STRIPS AS AN EFFECTIVE COUNTERMEASURE FOR DROWSY DRIVING; IN THIS CONTEXT, RAISE PUBLIC AWARENESS ABOUT DROWSY-DRIVING RISKS AND HOW TO REDUCE THEM

The panel believes that focusing a campaign on shoulder rumble strips offers multiple educational opportunities to convey key drowsy-driving messages.

Messages to the general public can explain the following:
What rumble strips are and why they are increasingly being used.

A message that rumble strips are designed to arouse sleepy drivers before they drive off the road could be an attention-getting way to highlight the prevalence of chronic sleepiness and point out the risks and possible consequences of drowsy driving. People who have driven over a rumble strip in the past could personalize the risk, and even seeing the strips on the highway in the future could repeatedly remind people of the message.

What to do when awakened by driving over a rumble strip.

Rumble strips act as an alarm clock, alerting drivers to the fact that they are too impaired to drive safely. In the short term, risk-reducing actions include stopping immediately if possible (e.g., a more alert driver can take over); consuming the caffeine equivalent of two cups of coffee; and taking a 20-minute nap. Then the driver should get off the road (e.g., at a motel or rest stop) as soon as possible and sleep.

In the longer term, planning ahead can help people avoid driving while sleepy. The panel believes that planning sleep and naps before long trips, scheduling trips to avoid midnight through 6 a.m. driving, and avoiding alcohol and sedating medicines are not a new approach but an opportunity to realize what has been known for years. The strips should not give drivers a false sense of security about driving while sleepy. The strips are useful as alerting devices, but they will not protect drivers who continue to drive while drowsy. Being awakened by driving over a rumble strip is a warning to change sleep and driving behaviors for safety. The strips are not a technological quick fix for sleepy drivers.

Messages to policymakers on the value of rumble strips can emphasize what they are, their relative cost-effectiveness, and why they are a valuable addition to highways in rural areas. Policymakers also may need information on the risks of drowsy driving and crashes to put the need for rumble strips in perspective.

EDUCATE SHIFT WORKERS ABOUT THE RISKS OF DROWSY DRIVING AND HOW TO REDUCE THEM

Employers, unions, and shift workers are potential target audiences for education on shift work and drowsy driving issues. The panel believes that messages directed to the public and employers can reinforce other drowsy-driving messages. Employers may be able to change or affect their fundamental work situation, they and their families and communities can benefit from information on their risks for drowsy driving and effective countermeasures. Key message points include:

Shift work may increase the risk of drowsy driving crashes. Night-, early morning-, and rotating-shift workers are often sleepy because their work times are inconsistent with the natural sleep-wake cycle. Workers on these shifts routinely get less sleep and lower quality sleep than do day workers. Driving while sleepy is a risky behavior that leads to many serious crashes each year.

Driving between midnight and 6 a.m. is a special risk for a drowsy-driving crash. Driving during late night/early morning hours increases risk for all drivers because those hours are a natural period of sleepiness. Driving home immediately after an extended or night shift are special risks for a drowsy-driving crash. Driving during late night/early morning hours increases risk for all drivers because those hours are a natural period of sleepiness. Many drowsy-driving crashes occur at this time. Driving while acutely tired, such as after a night shift, also increases risk. Shift workers, many of whom are already chronically sleep deprived, are at extra risk.

You can take effective steps to reduce your risks. First, it is important to give regular priority to getting good sleep by creating a quiet, cool, dark environment, allowing sufficient time for sleep, and trying to sleep during the same hours each day. Another strategy is to avoid driving when sleepy (e.g., getting a ride from a family member, taking a cab, napping before heading home). Consuming caffeine or foods or drinks equivalent to two cups of coffee may help improve alertness for a short period.
The three texts you’ve read are excerpts from a federal report on drowsy driving. They focused on populations at greatest risk and countermeasures to take to prevent crashes caused by drowsy driving.

Imagine you are a journalist in charge of covering this report for a feature article. Write a magazine article about what you learned. Analyze the report’s strengths and weaknesses. Highlight its most useful data and suggestions. Use details from the texts you’ve read here to complete your article.
Gain access to over 500 PARCC Lesson Plans for grades 3 through 11, each grade level including:

- 20 Reading lessons
- 20 Writing lessons
- 20 Mathematics lessons

Purchase lessons by grade level or alongside one of our professional development workshops

Call (908) 223-7202

Or email us at info@standardssolution.com
Gain access to over 500 PARCC Lesson Plans for grades 3 through 11, each grade level including:

- 20 Reading lessons
- 20 Writing lessons
- 20 Mathematics lessons

Purchase lessons by grade level or alongside one of our professional development workshops

Call (908) 223-7202

Or email us at info@standardsolution.com